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Abstract. A sequence of distinct closed surfaces in a hyperbolic 3-manifold M is asymptotically geodesic
if their principal curvatures tend uniformly to zero. When M has finite volume, we show such sequences
are always asymptotically dense in the 2-plane Grassmann bundle of M. When M has infinite volume
and is geometrically finite, we show such sequences do not exist. As an application of the former,
we obtain partial answers to the question of whether a negatively curved Riemannian 3-manifold that
contains a sequence of asymptotically totally geodesic or totally umbilic surfaces must be hyperbolic.
Finally, we give examples to show that if the dimension of M is greater than 3, the possible limiting
behavior of asymptotically geodesic surfaces is less constrained than for totally geodesic surfaces.

1. Introduction

A sequence of distinct connected closed surfaces in a hyperbolic 3-manifold M is asymp-
totically geodesic if their principal curvatures tend to zero in L∞ norm. Kahn-Marković and
Kahn-Wright showed that when M has finite volume, such sequences of surfaces exist
abundantly [KM12b], [KW21]. The first theorem (Theorem 1.1) in this article implies that
such sequences (Sn) of surfaces are always asymptotically dense in the 2-plane Grassmann
bundle Gr M of M – given an open B ⊂ Gr M, there is N so for every n ≥ N, Sn intersects
B. This result is used to obtain partial answers to variations on the question of whether a
closed negatively curved Riemannian manifold that contains a sequence of asymptotically
geodesic surfaces is hyperbolic (Theorems 1.7, 1.10.)

We also show (Theorem 1.6) that sequences of distinct asymptotically geodesic surfaces
do not exist in geometrically finite hyperbolic 3-manifolds M of infinite volume. Precisely,
we show there is ϵ(M) > 0 so that a closed surface of principal curvatures smaller than ϵ in
absolute value is homotopic to a totally geodesic surface.

There can be real qualitative differences in the behavior of sequences of totally geodesic
surfaces and sequences of surfaces that are only asymptotically geodesic. For example,
the first author showed that a sequence of distinct asymptotically geodesic surfaces Σn in
a hyperbolic 3-manifold can scar along a closed totally geodesic surface Σ, in the sense
that the corresponding sequence of probability measures νΣn converges to the probability
measure corresponding to Σ [AA]. This is in contrast to what happens for sequences of
distinct closed totally geodesicΣn in M, which Mozes-Shah showed must become uniformly
distributed [MS95].
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Most of our theorems are in the opposite direction, and show that asymptotically geo-
desic surfaces in negative curvature enjoy many of the same rigidity properties as totally
geodesic surfaces. In fact, many of our proofs rely on theorems from homogeneous dy-
namics that establish those rigidity properties for totally geodesic surfaces, such as the fact
proven by Ratner and Shah that they are either closed or dense in a hyperbolic 3-manifold
of finite volume [Rat91],[Sha91].

On the other hand, we construct sequences of asymptotically Fuchsian (Kn-quasifuchsian
for Kn → 1) pleated surfaces and minimal surfaces in certain hyperbolic d-manifolds M
with d ≥ 4 whose Hausdorff limit is a union of two distinct totally geodesic submanifold of
M (Theorem 1.5.) This contrasts with the fact, that follows from the work of Mozes-Shah,
that the Hausdorff limit of a sequence of totally geodesic surfaces in M, if it exists, has to
be a single totally geodesic k-submanifold for 3 ≤ k ≤ d (Proposition 5.2.)

1.1. Density of asymptotically geodesic surfaces in finite volume. Let M = Γ\H3 be a
hyperbolic 3-manifold of finite volume, where Γ ≤ PSL2 C is a lattice. All surfaces in this
paper will be connected. An essential surface S ⊂ M is K-quasifuchsian if π1(S) ≤ π1M = Γ
is a K-quasifuchsian subgroup of PSL2 C, i.e., there is a K-quasiconformal homeomorphism
ϕ : ∂∞H3

→ ∂∞H3 so ϕ ◦ π1(S) ◦ ϕ−1 is Fuchsian. For K sufficiently close to 1, work
by Uhlenbeck and Seppi imply that K-quasifuchsian surfaces S ⊂ M are homotopic to
unique minimal surfaces with principal curvatures going to zero uniformly as K → 1
[Uhl83],[Sep16]. Our first theorem is:

Theorem 1.1. Let M be a finite volume hyperbolic 3-manifold. Let B be an open set. Then, there is
ϵ = ϵ(B) > 0 such that all (1+ ϵ)-quasifuchsian minimal surfaces in M that are not totally geodesic
meet B.

As direct consequences of the previous theorem (and its proof), we obtain the following
two corollaries. We say that a surface S is ϵ-dense in Gr M if every tangent 2-plane to M is
at a distance of at most ϵ from some tangent plane to S.

Corollary 1.2. For every ϵ > 0 there is some η = η(M) > 0 so that all but finitely many (1 + η)-
quasifuchsian closed minimal surfaces are ϵ-dense in the the Grassmann bundle of tangent 2-planes
to the η-thick part of M. Moreover, the ones which are not are totally geodesic.

Corollary 1.3. Let (Sn) be a sequence of distinct closed asymptotically Fuchsian minimal surfaces
in M. Then, (Sn) is asymptotically dense in Gr M: for every open U ⊂ Gr M, there is N so that for
every n ≥ N, Sn intersects U.

These theorems imply that, in the topology induced by the Hausdorff distance between
closed sets in Gr M, sequences of asymptotically geodesic surfaces Sn always limit to all of
Gr M. This is in contrast with the fact that sequences of asymptotically geodesic surfaces
Sn may not equidistribute in Gr M – in fact, work by the first author showed that the
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probability measures νn induced by them on Gr M may limit in the weak-* topology to a
measure supported on a single totally geodesic surface in M [AA].

A crucial ingredient in these proofs is the Ratner-Shah theorem stating that totally
geodesic surfaces are either closed or dense in M. When M has infinitely many distinct
totally geodesic surfaces, the fact due to Mozes-Shah that they are equidistributing also
plays an important role [MS95].

Remark 1.4. Results similar to the previous theorem and corollaries were recently and
independently obtained by Xiaolong Hans Han [Han25].

1.2. Hausdorff limits in higher dimensions. We say a sequence of surfaces (Sn) in a
hyperbolic d-manifold M is asymptotically Fuchsian if the Sn are Kn-quasifuchsian for Kn → 1
as n → ∞. (Analogously to the 3-dimensional case, we say an essential surface S ⊂ M is
K-quasifuchsian if π1(S) ≤ SO(d, 1) is a K-quasifuchsian subgroup, meaning there is a
K-quasiconformal homeomorphism of ∂∞Hd conjugating π1(S) into SO(2, 1).)

Asymptotically Fuchsian surfaces in M are always homotopic to asymptotically geodesic
ones [Jia21]. Conversely, asymptotically geodesic surfaces are asymptotically Fuchsian
[Eps86]. We show

Theorem 1.5. Suppose M is a closed hyperbolic d-manifold containing two closed totally geodesic
3-dimensional submanifolds N1 and N2 that intersect along a closed totally geodesic surface.

Then, there exists a sequence (Sn) of asymptotically Fuchsian closed connected pleated surfaces
whose Hausdorff limit in M is N1∪N2. There also exists a sequence (Sn) of asymptotically geodesic
minimal surfaces whose Hausdorff limit in M is N1 ∪N2.

This is in contrast with the fact that the Hausdorff limit of a sequence of connected closed
totally geodesic surfaces in a closed hyperbolic d-manifold is always a single totally geodesic
submanifold when it exists (see Section 5.2.)

To construct the surfaces (Sn), we construct sequences (S1
n) and (S2

n) of closed, connected,
equidistributing surfaces on each of the Ni. These surfaces are built out of good pants – pants
with large but nearly identical cuff lengths, following Kahn-Marković and Kahn-Wright,
as well as Liu-Marković to ensure they are connected. We join the sequences inside each
Ni with a surgery and argue they remain asymptotically Fuchsian, using the fact that the
totally geodesic surface N1 ∩ N2 has a finite cover built out of the same building blocks
as (S1

n) and (S2
n) (as shown by Kahn-Marković in their proof of the Ehrenpreis conjecture

[KM15]).

1.3. Nonexistence of asymptotically geodesic surfaces in infinite volume. We now let M
be a geometrically finite hyperbolic 3-manifold of infinite volume. We say a surface S ⊂ M
is essential if it is π1-injective.
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Theorem 1.6. Let M be a geometrically finite hyperbolic 3-manifold of infinite volume. Then, there
is ϵ = ϵ(M) > 0 so that any closed essential surface S ⊂ M with principal curvatures at most ϵ in
absolute value is homotopic to a totally geodesic surface.

Similarly, let Γ < PSL2 C be a geometrically finite Kleinian group of infinite covolume. There is
ϵ = ϵ(Γ) > 0 so that any (1 + ϵ)-quasifuchsian surface subgroup of Γ is Fuchsian.

Combined with the fact proven by McMullen-Mohammadi-Oh [MMO17] and Benoist-
Oh [BO22] that such M only contain finitely many compact totally geodesic sufaces, this
shows that M contains no sequences of distinct closed asymptotically geodesic surfaces.
This in contrast with the case when M has finite volume, where the theorems of Kahn-
Marković and Kahn-Wright show that there are many sequences of closed asymptotically
geodesic surfaces.

On the other hand, when M is also acylindrical, Cooper, Long and Reid show M contains
infinitely many essential homotopy classes of surfaces that cannot be homotoped to a
connected component of the boundary of the convex core and any two of which are
geometrically distinct: they cannot be homotoped to the same subspace of M [CLR97].
Theorem 1.6 shows they are not (1 + ϵ(Γ))-quasifuchsian, except for possibly finitely many
that are totally geodesic.

When the convex core of M is compact and has totally geodesic boundary, we are able
to prove Theorem 1.6 by contradiction – if M had a sequence of closed asymptotically
geodesic surfaces, their minimal representatives would all live inside the convex core of
M, so they would not be dense in the double of M, violating Corollary 1.3. In the general
case, we also give an argument by contradiction, but using the theorem of Benoist-Oh
(following McMullen-Mohammadi-Oh) that there are only finitely many compact totally
geodesic surfaces in the convex core of M.

For M as above, let ϵ(M) be the supremum over all ϵ > 0 such that (1 + ϵ)-quasifuchsian
essential surfaces of M are Fuchsian. We have shown ϵ(M) > 0, but we can still ask

Question 1. 1 Is it possible to estimate ϵ(M) in terms of geometric or topological properties
M? Is the infimum of ϵ(M) positive as M ranges over the deformation space of complete
hyperbolic structures on M, minus a neighborhood of the subspace of hyperbolic structures
with a Fuchsian end?

As discussed above, finite volume hyperbolic 3-manifolds contain a great many se-
quences of closed non-totally geodesic hypersurfaces with principal curvatures tending to
0. It is unknown whether finite volume higher dimensional hyperbolic manifolds are more
like infinite volume hyperbolic 3-manifolds or finite volume hyperbolic 3-manifolds in this
regard.

1This question was suggested by Alan Reid.
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Question 2. Let M be a finite volume hyperbolic d-manifold of dimension d ≥ 4. Given
ϵ > 0, does M contain a closed essential hypersurface with principal curvatures at most
ϵ in absolute value that is not homotopic to a totally geodesic hypersurface? Is there any
such M that does?

1.4. Rigidity of asymptotically geodesic surfaces in negative curvature. We are interested
in variations on the following question. Corollary 1.3 will play an important role in the
results we obtain.

Question 3. Let (M, g) be a closed negatively curved 3-manifold containing a sequence of
distinct asymptotically geodesic surfaces. Must (M, g) have constant curvature?

With a strong topological assumption on the surfaces, we are able to give a positive
answer. Recall that by geometrization every closed negatively curved 3-manifold carries a
hyperbolic metric, which by Mostow rigidity is unique up to isometry.

Theorem 1.7. Let (M, g) be a closed negatively curved 3-manifold and (Σn) ⊂ (M, g) be a sequence
of asymptotically geodesic surfaces.

Suppose there is a diffeomorphism ϕ : M → M so that Sn := ϕ(Σn) form a sequence of
asymptotically geodesic surfaces for the hyperbolic metric ghyp on M. Then, g is isometric to ghyp.

To prove this, we show that Gr M has a dense totally geodesic plane for the metric g,
and by a classical result of Cartan we are able to conclude g is hyperbolic. To do so, we use
the fact that the surfaces Sn are asymptotically dense in Gr M, per Corollary 1.3. We are
then able to show that the corresponding surfaces in the metric g are asymptotically dense
by following ideas from the article of Calegari-Marques-Neves [CMN22], which proved
a rigidity result for negatively curved closed 3-manifolds in terms of the growth rate of
essential minimal surfaces, counted by area.

Question 3 is not fully settled even when we assume (M, g) contains a sequence of
distinct totally geodesic surfaces. In that setting, however, there has been recent progress:
Filip-Fisher-Lowe [FFL24] answer it positively when the metric g is analytic, and by the
work of Bader-Fisher-Miller-Stover [BFMS21] and Margulis-Mohammadi [MM22], one
concludes that (M, g) is in fact an arithmetic hyperbolic manifold.

In all of these works, the fact that the distinct totally geodesic surfaces are asymptotically
dense in Gr M (in fact, they equidistribute) plays a major role. A natural next question is
whether one can obtain rigidity theorems knowing only about finitely many or even a
single surface. For example, one can ask whether (M, g) containing a closed sufficiently
large geodesic hyperbolic surface is enough to force g to be hyperbolic. Without any
additional conditions, it is easy to show there can be no rigidity by perturbing the metric
in a small ball. However, imposing an upper bound on the curvature we are able to prove
the following theorem.
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Theorem 1.8. Let (M, ghyp) be a closed hyperbolic 3-manifold. Then there is ϵ > 0 and a finite
collection of closed totally geodesic surfaces so that if S is (1+ ϵ)-quasifuchsian surface that does not
belong to the finite collection of totally geodesic surfaces, the following holds.

Assume g is a metric on M with sectional curvature bounded above by -1 so that

• Σ is a totally geodesic hyperbolic surface in (M, g)

• There is a homotopy equivalence ϕ : M→M so ϕ(Σ) = S.

Then, g is isometric to ghyp and S is homotopic to a totally geodesic surface in (M, ghyp).

The second author proved this result for all but finitely many totally geodesic surfaces in
(M, ghyp), and building on work by V. Lima gave examples to show that it was necessary to
exclude finitely many totally geodesic surfaces [Low23], [Lim19]. By the work described
above we can only have infinitely many distinct closed totally geodesic S when M is
arithmetic, which is a very strong condition on a hyperbolic 3-manifold. However, every
closed hyperbolic 3-manifold contains many sequences of distinct asymptotically geodesic
surfaces, from the Kahn-Marković surface subgroup theorem. Therefore by the previous
theorem every closed hyperbolic 3-manifold contains many essential surfaces that are not
homotopic to totally geodesic hyperbolic surfaces in any metric with sectional curvature
at most −1.

The second author’s original result was proved by arguing that the surface Σ must be
well-distributed, meaning that any point in the universal cover M̃ is enclosed in a cube whose
faces are lifts of Σ to M̃ (compare with the notion of a filling surface recently introduced by
X.H. Han [Han25].) Then he shows that the existence of a well-distributed surface Σ ⊂ M
implies the metric g must be hyperbolic. To showΣ is well-distributed, he uses the fact that
the Sk are asymptotically dense in Gr2 M, from the work of Mozes-Shah [MS95]. Corollary
1.3 implies the Sk are asymptotically dense in Gr2 M even if they are only asymptotically
geodesic, so we are able to follow Lowe’s original proof and obtain Theorem 1.8.

Another natural question in this direction is:

Question 4. Are the hypotheses of Theorem 1.8 sufficient to guarantee that (M, ghyp) is
arithmetic, and so has infinitely many distinct finite area geodesic surfaces? If a closed
hyperbolic 3-manifold contains a closed well-distributed totally geodesic surface, then
must it be arithmetic?

Finally, we can use Theorem 1.8 to prove a local rigidity result without any assumptions
on the topology of the surfaces in question.

Corollary 1.9. Let (M, ghyp) be a closed hyperbolic 3-manifold. Then there is δ > 0 and A > 0 so
that the following holds:

Assume g is a metric on M with sectional curvature bounded above by -1 so that
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• The C2 distance between g and ghyp measured in ghyp is less than δ

• Σ is a totally geodesic hyperbolic surface in (M, g)

• The area of Σ is greater than A.

Then, g is isometric to ghyp and Σ is homotopic to a totally geodesic surface in (M, ghyp).

Proof. Given the ϵ > 0 obtained by applying Theorem 1.8 to (M, ghyp), we can ensure that
any metric g and surface Σ as in the statement of Corollary 1.9 is (1 + ϵ)-quasifuchsian
provided that δwas chosen sufficiently small. Next, if A was chosen large enough, we can
assume that Σ was not homotopic to one of the finitely many totally geodesic surfaces to
which Theorem 1.8 does not apply. Theorem 1.8 then applies to give the conclusion of the
corollary. □

1.5. Rigidity of totally umbilic surfaces in negative curvature. We say a surface is totally
umbilic if all of its principal curvatures have the same positive constant value at every point.
They are to constant mean curvature surfaces as minimal surfaces are to totally geodesic
surfaces. A final variation on Question 3 we consider is:

Question 5. Let (M, g) be a Riemannian 3-manifold with sectional curvature bounded
above by −c < 0 containing infinitely many distinct totally umbilic surfaces with mean
curvature smaller than c. Must (M, g) be hyperbolic?

If the mean curvature of the totally umbilic surfaces is allowed to be large, then one
does not expect a rigidity statement due to the fact that metric spheres in hyperbolic
space are totally umbilic. It suffices to take a hyperbolic metric and perturb it in a small
neighborhood to obtain a variably negatively curved manifold with infinitely many totally
umbilic hypersurfaces. The condition that the mean curvature be smaller than c is a
natural choice because for every ϵ > 0 there are closed negatively curved 3-manifolds with
sectional curvature non-constant and at most −c, and that contain infinitely many totally
umbilic surfaces with mean curvature at most c + ϵ. These can be constructed from closed
hyperbolic 3-manifolds with arbitrarily large injectivity radius, by perturbing the metric
slightly outside of a large injectivity ball and then rescaling the metric depending on the
value of c.

We are able to prove the following theorem, which is analogous to Theorem 1.7, and
which we view as evidence for a positive answer to Question 5.

Theorem 1.10. Suppose that (M, g) is a closed negatively curved 3-manifold, and that it contains
infinitely many distinct totally umbilic surfaces Σn as in Question 5. Suppose there is a homotopy
equivalence h : M→M so that the Sn := h(Σn) are homotopic to a sequence of asymptotically totally
umbilic surfaces for a hyperbolic metric ghyp on M. Then (M, g) must have constant curvature.



8 FERNANDO AL ASSAL AND BEN LOWE

Totally umbilic surfaces lack the connection to the geodesic flow that totally geodesic
surfaces have, and we thus require a different argument from Theorem 1.7. The proof of
Theorem 1.10 instead uses the Labourie-Smith theory of k-surfaces, or surfaces for which the
product of the principal curvaures, or extrinsic curvature, is constant. Labourie introduced
k-surfaces as a higher dimensional analogue of the geodesic flow and proved a number
of deep results in this direction [Lab99], [Lab05] (see [Lab02] for a survey.) Their strong
rigidity and uniqueness properties allow us to move information from constant to variable
negative curvature and thereby obtain the control on the Sn we need to prove Theorem
1.10.

1.6. Beyond asymptotically Fuchsian. Very little is understood of the behavior of se-
quences of quasifuchsian minimal surfaces that fail to be asymptotically geodesic, although
recent work by Rao constructed many such examples [Rao23]. As a first step in this direc-
tion, we prove the following theorem in Section 8.

Theorem 1.11. There are asymptotically dense sequences of closed quasifuchsian minimal or pleated
surfaces that are not asymptotically Fuchsian.

1.7. Related work and context. The question of whether what is true for totally geodesic
surfaces in hyperbolic 3-manifolds remains true for sequences of asymptotically geodesic
minimal surfaces has been a focus of recent activity [AA], [CMN22], [KMS23], [Lab22].

More generally, Thurston noticed that closed surfaces with principal curvatures smaller
than one are incompressible (see [Lei06] for a proof), and since then surfaces with small
principal curvatures have been important in hyperbolic 3-manifold theory. Recent papers
in which they play an important role include [BR24],[Bro23], [HL21], [MN24], [NSS25].

Work by Solan studied subgroups of hyperbolic 3-manifold groups that are asymptotic
to Fuchsian subgroups in a different sense– that their critical exponents tended to one from
below– and proved rigidity and gap theorems in that context [Sol24].

The second author proved density theorems for minimal surfaces in certain negatively
curved 3-manifolds [Low21]. The techniques of that paper could be combined with Corol-
lary 1.3 of this paper to prove asymptotic density statements for sequences of minimal
surfaces in certain negatively curved 3-manifolds, provided that the minimal surfaces in
the sequence were homotopic to asymptotically Fuchsian surfaces in the hyperbolic metric.

Arguments similar to Section 7 have prior to this been used to prove various asymptotic
rigidity statements for k-surfaces [ALS22], [ALS24] (see [Alv25] for a survey.)

Finally we mention again the work by X.H. Han that obtains results similar to Theorem
1.1 and its corollaries, and gives applications inspired by analogies to filling curves on
surfaces [Han25].

1.8. Outline. In Section 2 we give the proof of Theorem 1.1. In Section 3 we prove The-
orem 1.6. In Section 4 we establish some structural facts regarding accumulation sets of
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asymptotically geodesic surfaces in hyperbolic manifolds. In Section 5 we prove Theorem
1.5. In Section 6 we prove Theorems 1.7 and 1.8. In Section 7 we prove Theorem 1.10. In
Section 8 we prove Theorem 1.11.

1.9. Acknowledgements. The second author was supported by NSF grant DMS-2202830.
The second author thanks Graham Smith for answering some questions about k-surfaces.

2. Proof of Theorem 1.1

Let M be a finite volume hyperbolic 3-manifold. Denote by Gr M the Grassmann bundle
of tangent 2-planes to M. We start by recording a useful lemma.

Lemma 2.1. Let E ⊂ Gr M be a finite collection of finite area totally geodesic surfaces. Then there
is δ = δ(E) > 0 so that if S ⊂M is an essential closed immersed surface that is not homotopic to any
totally geodesic surface and no essential loop of which is homotopic into a cusp, then d(Π,E) > δ
for some tangent plane Π to S in the δ-thick part of M.

We first prove the following.

Claim 2.2. Let G ⊂ Gr M be a finite collection of closed (compact) totally geodesic surfaces. There
is δ = δ(G) > 0 so that if S ⊂ M is a closed essential immersed surface whose tangent planes are
contained in the δ-neighborhood of G, then S is homotopic to a cover of a surface in G.

Proof. Note that as subsets of Gr M, closed totally geodesic surfaces of M are always em-
bedded in Gr M. In particular, distinct surfaces in E are disjoint as subsets of Gr M.

We may first take δ > 0 small enough so the δ-neighborhoods of the components of G
are all disjoint from each other in Gr M. Since S is connected, we may assume it lies in the
δ-neighborhood of a component T of G.

Thus, for each point p ∈ S, there is a unique nearest point π(p) ∈ T. We can construct
a homotopy having each point p ∈ S traverse the geodesic segment in M from p to π(p).
Provided δ was chosen small enough, the map π is a local diffeomorphism, and so a
covering map. We conclude S is homotopic to a cover of T. □

We now give the proof of Lemma 2.1.

Proof. We choose δ smaller than the Margulis constant and the δ given by previous claim
applied to the closed surfaces in E. We also require that the closed surfaces in E are
contained in the δ-thick part of M. By the previous claim and our choice of δ, S must have
a tangent plane at a distance of at least δ from every tangent plane to every closed totally
geodesic surface in E. It is therefore enough to show that S has some tangent plane at a
distance of at least δ from every tangent plane to a noncompact surface in E. Assume for
contradiction that this is not the case.
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After perturbing S slightly we can ensure that it intersects the boundary of the δ-thin
part M≤δ transversely. Then every connected component of the intersection of S with M≤δ

must be homeomorphic to a disk or an annulus, since S is essential. Choosing δ smaller if
necessary, reasoning as in Claim 2.2 we can show that every connected component of the
intersection S ∩M≥δ must be contained in a small neighborhood of at most one finite area
totally geodesic surface in E. The only way that S ∩M≥δ could be contained in a union of
at least two distinct finite area totally geodesic surfaces (while not being contained in just
one) would be if one of the annuli components of the intersection of S with the thin part
included to a parabolic element ofπ1(M)– such an annulus would have one boundary circle
on a connected component of a component of S∩M≥δ near one finite area totally geodesic
surface and one boundary circle on a component of S∩M≥δ near another finite area totally
geodesic surface– which is contrary to our assumption that S contained no essential loops
that could be homotoped into a cusp.

Therefore every connected component of the intersection of S with the thin part is
contained in a small neighborhood of the same finite area surface Σ0, and the core curves
of all annuli in the intersection of S with the thin part are contractible in S. In the same way
as in the proof of Claim 2.2 we can then homotope S to a new surface S′ so that S′ ∩M≥δ is
contained in Σ0. Therefore for some choice of basepoint on Σ0 the fundamental group of
S′ injectively includes to a subgroup of the fundamental group of Σ0, which is impossible
because Σ0 is cusped.

Therefore S has tangent planes at a distance of at least δ to all tangent planes to non-
compact surfaces in E, which completes the proof.

□

Below, for p ∈ Gr M, denote by ∆R(p) denote the geodesic disc of radius R tangent to
p. For a metric space X, we let NδA denote the δ-neighborhood of subset A ⊂ X. We say
A ⊂ X is ϵ-dense if NϵA = X – in other words, A intersects every ball of radius ϵ in X.

2.1. When M has finitely many finite area totally geodesic surfaces. We first handle the
case that M has only finitely many finite-area totally geodesic surfaces. Throughout this
bit, let E denote the union of all the finite-area totally geodesic surfaces of M.

Lemma 2.3. Assume that M is compact. Then for every ϵ > 0 and every δ > 0, there exists R0(ϵ, δ)
so if R > R0 and d(p,E) ≥ δ, then ∆R(p) is ϵ-dense in Gr M.

Proof. If the statement is false, then there is ϵ, δ > 0 and a sequence of R j tending to infinity
so that for every positive integer j, there is p j < Nδ(E) so that ∆R j(p j) is not ϵ-dense in Gr M.
In particular, ∆R j(p j) misses an ϵ-ball Bϵ(q j) around some q j ∈ Gr M.

From the compactness of Gr M − Nδ(E) and Gr M, we can extract common convergent
subsequences of (p j) and (q j) converging to some p < Nδ(E) and q ∈ Gr M, respectively. For
simplicity, we also denote these subsequences by (p j) and (q j).
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By construction, ∆R j(p j) does not intersect Bϵ(q j). For sufficiently large j, we can also
ensure that ∆R j(p j) does not intersect Bϵ/2(q).

In particular, if we fix a (sufficiently large) k, then for j ≥ k, ∆Rk(p j) does not intersect
Bϵ/2(q). But as k is fixed, the Hausdorff distance between ∆Rk(p j) and ∆Rk(p) goes to zero as
j → ∞. Thus for j large enough, we have that ∆Rk(p) ⊂ Nϵ/4∆Rk(p j). We conclude ∆Rk(p)
does not intersect Bϵ/4(q) and so the geodesic plane ∆(p) :=

⋃
k≥1 ∆Rk(p) through p is not

dense in Gr M.
This contradicts the theorem of Ratner and Shah ([Rat91],[Sha91]) which tells us that the

geodesic plane through any point p ∈ Gr M − E is dense in Gr M. □

If M has cusps, essentially the same argument shows the following.

Lemma 2.4. For every ϵ > 0, δ > 0 and η > 0, there exists R0(ϵ, δ, η) so that if R > R0, p ∈ M≥η

and d(p,E) ≥ δ, then ∆R(p) is ϵ-dense in Gr M≥η, where M≥η is the η-thick part of M.

We can now prove Theorem 1.1 when M has only finitely many finite area totally geodesic
surfaces.

Proof of Theorem 1.1, special case. First assume that M is compact. Let ϵ > 0 be the radius of
B and let δ > 0. By Lemma 2.3, there is R0 > 0 so whenever d(p,E) > δ, then ∆R(p) is ϵ-dense
in Gr M.

Let S be a (1+ ξ)-quasifuchsian minimal surface distinct from the surfaces in E. A result
of Seppi tells us the absolute values of the principal curvatures of S are uniformly bounded
by C log(1+ξ), where C is a universal constant [Sep16]. In particular, if we denote by DS

R(p)
the intrinsic disc in S of radius R passing through p, for ξ sufficiently small depending on
ϵ, we have that

∆R(p) ⊂ Nϵ(DS
R(p)).

From Lemma 2.1, we know that every quasifuchsian surface S ⊂ Gr M has at least one
point p(S) ∈ Gr M outside of NδE. In particular, DS

R(p(S)) is 2ϵ-dense in Gr M.
If M has cusps then one can apply Lemma 2.1 and Lemma 2.4 to argue in the same way,

replacing M with the η-thick part of M in the relevant places.
□

2.2. When M has infinitely many finite area totally geodesic surfaces.

Lemma 2.5. Assume that M is compact. Then for every ϵ > 0, there exists a collection E ⊂ Gr M of
finitely many closed totally geodesic surfaces such that for every δ > 0, there is R0 > 0 so if R > R0
and d(p,E) ≥ δ then ∆R(p) is ϵ-dense in Gr M.

Proof. Let ϵ > 0. We choose E to be the union of all the totally geodesic surfaces of M which
are not ϵ/4-dense in Gr M. From the equidistribution theorem of Mozes and Shah ([MS95]),
we know E is the union of finitely many surfaces.
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Now fix δ > 0. We now wish to show there is R0 = R0(ϵ, δ,E) so whenever p < Nδ(E),
then ∆R(p) is ϵ-dense in Gr M. If we suppose that is not true, then we may find, as in the
proof of Lemma 2.3, a point p ∈ Gr M −Nδ(E) so the geodesic plane ∆(p) through p misses
a ball of radius ϵ/4 around some point q. If p does not lie in a totally geodesic surface, then
this contradicts the Ratner-Shah theorem on geodesic planes, as explained before. If p does
lie in a totally geodesic surface, then it has to be a surface not in E, which by construction
is ϵ/4-dense in Gr M, again a contradiction. □

Proof of Theorem 1.1 in general. Let ϵ > 0, and assume that M is compact. By Lemma 2.5,
there is a finite collection E ⊂ Gr M of geodesic surfaces, δ > 0 small enough so Gr M−Nδ(E)
is nonempty, and R0 > 0 so that for every R > R0, if p ∈ Gr M −Nδ(E) then ∆R(p) is ϵ-dense
in Gr M.

Now, by the same arguments (the last three paragraphs) from the proof of Theorem 1.1 in
the previous case, we can show that for ξ sufficiently small, (1 + ξ)-quasifuchsian surfaces
distinct from those contained in E are 2ϵ-dense in Gr M.

The arguments in the case that M has cusps are again similar. □

3. Nonexistence of asymptotically geodesic surfaces in infinite
volume

In this section we show that, unlike in the finite-volume case, there is a gap between
totally geodesic surfaces and non-totally geodesic essential surfaces for geometrically finite
hyperbolic 3-manifolds of infinite volume.

Theorem 3.1. Let M = Γ\H3 be an infinite volume geometrically finite hyperbolic 3-manifold.
Then there is ϵ = ϵ(Γ) > 0 so all (1 + ϵ)-quasifuchsian closed surface subgroups of Γ are Fuchsian.

The same proof also gives the following theorem.

Theorem 3.2. Let M = Γ\H3 be an infinite volume geometrically finite hyperbolic 3-manifold.
Then there is ϵ = ϵ(M) > 0 so that if S ⊂ M is a closed minimal surface with principal curvatures
uniformly bounded by ϵ, then S is totally geodesic.

Remark 3.3. We expect that similar statements could be obtained in higher dimensions for
maximal surfaces (i.e., surfaces that cannot be homotoped into a proper totally geodesic
submanifold) using work of Lee-Oh [LO24][Theorem 1.7], which proved among other
things that convex cocompact hyperbolic n-manifolds of infinite volume contain only
finitely many closed maximal totally geodesic submanifolds of dimension at least two.
Recently, Lee-Oh [LO26] extended their result to encompass all geometrically finite rank-
one manifolds of infinite volume. The question of whether there exists there are convex
cocompact hyperbolic n-manifolds without Fuchsian ends for n > 3 that are homeomorphic
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to convex cocompact manifolds with Fuchsian ends is still unresolved, although Kerckhoff-
Storm gave a negative answer locally [KS12].

Proof. I. A proof when core M is compact and has totally geodesic boundary.
We first give a proof in the special case that core M is compact and has totally geodesic

boundary. Let M̂ be the closed hyperbolic 3-manifold obtained by doubling core M
Suppose (Qi) ≤ Γ is a sequence of asymptotically Fuchsian surface subgroups. They give

rise to a sequence of immersed minimal surfaces fi : Si → M with ( fi)∗(π1Si) = Qi [Uhl83],
and by the maximum principle fi(Si) always lies in the convex core of M. (The Si are obtained
by minimizing area in the covering spaces corresponding to the injective inclusions of their
fundamental groups.) In addition, fi : Si → M̂ is a sequence of asymptotically geodesic
minimal surfaces by [Sep16]. These surfaces are not dense in M̂, as they never touch M̂−M.
This contradicts Theorem 1.3.

II. The proof in general.
The crucial ingredient in the proof is Theorem 1.5 of [BO22] that states that for a geomet-

rically finite infinite volume hyperbolic 3-manifold M there are only finitely many finite
area totally geodesic surfaces contained in core M, and these are the only closed immersed
(not necessarily compact) totally geodesic planes in core M. We denote their union, as a
subset of Gr2 M, by E.

Suppose (Qi) ≤ Γ is a sequence of asymptotically Fuchsian surface subgroups. As before
they give rise to a sequence of minimal surfaces Si ⊂ core M with π1Si = Qi such that the
L∞ norms of the principal curvatures of Si tend to zero as i→∞.

If the Si were not totally geodesic, then the same arguments as the proof of Claim 2.2
and Lemma 2.1 show that there is δ > 0 and pi ∈ Si so that the tangent plane ∆(pi) to Si at
pi is at a distance of at least δ from E in Gr2 M and contained in the δ-thick part of core M.

The proof of the following statement can be proved by an argument by contradiction
similar to the proof of Lemmas 2.3 and 2.4, using the fact from Benoist-Oh ([BO22][Theorem
1.5]) that every immersed totally geodesic plane not contained in E leaves the convex core
of M.

Claim 3.4. There is R = R(δ) > 0 so that for every p in the intersection of the δ-thick part of M
with Gr2(core M) −NδE, the totally geodesic disc ∆R(p) of radius R based at p leaves core M.

The fact that the principal curvatures of Si are going to zero in L∞ norm tells us that the
Hausdorff distance between the intrinsic discs DR(pi) ⊂ Si of radius R centered at pi and
the geodesic discs ∆R(pi) goes to zero as i→∞. In particular, ∆R(pi) leaves core M for large
enough i, contradicting that the surfaces Si all lie in core M.

□
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4. Possible accumulation sets in higher dimensions

Let M denote a closed d-dimensional hyperbolic manifold.
Let (Xn) be a sequence of sets in the Grassman bundle Gr M = Gr2 M of tangent 2-planes

to M. The accumulation set of (Xn), denoted acc(Xn), consists of the points x ∈ Gr M arising
as limits of sequences xn ∈ Sn. Note that this is a strictly stronger condition than if we
required only that the points in the set arose as subsequential limits of sequences xn. Note
also that (Xn) is asymptotically dense exactly when its accumulation set is all of Gr M and
(Xn) is always asymptotically dense in its accumulation set. Finally, we point out that the
accumulation set of a sequence that converges in the Hausdorff topology is the Hausdorff
limit of that sequence.

The goal of this section is to prove the following theorem.

Theorem 4.1. Let Sn be a sequence of asymptotically Fuchsian minimal surfaces in M. Then,
the accumulation set of Sn is a finite union E of totally geodesic submanifolds of M of dimension
3 ≤ k ≤ d.

Remark 4.2. The same proof shows that the statement of the theorem holds for a sequence
Sn of asymptotically geodesic surfaces, that are not assumed to be minimal.

Lemma 4.3. Suppose Sn is a sequence of asymptotically Fuchsian minimal surfaces that is not
contained in a finite union of closed totally geodesic submanifolds of M. Then Sn is asymptotically
dense.

Proof. The proof of the Lemma makes use of the Ratner-Shah theorem and closely follows
the proof of Theorem 1.3 in three dimensions.

Following similar arguments to the proofs of Lemmas 2.3, 2.5, we can show:

Lemma 4.4. For every ϵ > 0 and δ > 0, there is a finite union of totally geodesic submanifolds
E ⊂ M with dimensions in {2, . . . , d − 1} and R0(ϵ, δ,E) > 0 so that if R > R0 and p is a tangent
2-plane to M at a distance of at least δ from every tangent 2-plane to E, then ∆R(p) is ϵ-dense in
Gr2 M.

We can also prove the following lemma analogous to Lemma 2.1.

Lemma 4.5. Suppose E ⊂ M is a finite union of proper totally geodesic submanifolds of M and
let S be an essential surface of M that is not homotopic to a surface contained in E. Then, there is
ϵ = ϵ(E) > 0 so that there is a tangent 2-plane p to S at a distance of at least ϵ from every tangent
2-plane to E.

Proof. It suffices to show that for ϵ > 0 small enough, if dGr2(M)(S,E) ≤ ϵ, then S can be
homotoped to a surface contained in E. To do so, as in the proof of Claim 2.2, we let
π : S → E be the nearest point projection, which is well-defined if ϵ > 0 was chosen small
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enough. We homotope S into E by having each point x ∈ S traverse the geodesic joining x
to π(x). □

We may now finish the proof of Lemma 4.3. Let ϵ > 0 and δ > 0. By Lemma 4.4, we
may choose a finite union of totally geodesic submanifolds E ⊂ M and and R > 0 so that
whenever dGr2 M(p,E) > δ, then the geodesic disc ∆R(p) is ϵ-dense in Gr M.

From Lemma 4.5, we know that there is a sequence of tangent planes pn ⊂ Sn with
dGr2 M(pn,E) ≥ δ. Here we are using the fact that an essential minimal surface can be
homotoped into a totally geodesic submanifold if and only if it is already contained in it.

From the work of Jiang (section 2 of [Jia21]) we know that for n large enough the Sn
are smooth surfaces without branch points, and that their principal curvatures converge
uniformly to zero as n→ ∞. In particular, if we denote by Dn

R(q) the intrinsic disc in Sn of
radius R passing through q, we have that for n large enough, dGr2 M(Dn

R(pn),∆R(pn)) ≤ ϵ.
Thus, there is N so that for n ≥ N, the intrinsic discs Dn

R(pn) are ϵ-dense in Gr M. In
particular, Sn are 2ϵ-dense for n ≥ N. □

Lemma 4.3 above shows that if (Sn) are asymptotically Fuchsian minimal surfaces that
are not asymptotically dense, then their accumulation set is contained in a finite union E of
totally geodesic submanifolds.

Denote byA the accumulation set of the Sn. Let G be the set of all finite unions of totally
geodesic submanifolds that contain A. We claim that the intersection F of the sets in G is
also an element of G. To see this, enumerate the elements of G as g1, g2, ... We can write the
intersection F = ∩gi as the intersection of the descending chain of sets Fi := ∩i

k=1gi:

F = ∩∞i=1Fi.

We know that Fi+1 ⊂ Fi, and that either Fi = Fi+1, or else the sum of the dimensions of
the connected totally geodesic submanifolds of Fi+1 is smaller than those of Fi. Therefore
the sequence of Fi is eventually constant, and equal to F.

4.1. Claim: F = A. Assume for contradiction that A is a proper subset of F, and let Σ be
a closed totally geodesic submanifold of F that contains a point that is not contained inA.
We know thatA∩Σ is not contained in a union of closed totally geodesic submanifolds of
Σ, otherwise we could take F to be a smaller set.

If there were some tangent planeΠ toΣ inA that was not contained in any closed totally
geodesic submanifold of Σ, then the totally geodesic plane tangent to Π would be dense
in Σ by Ratner’s theorems. Since Π is in the accumulation set of the Sn and the Sn are
asymptotically geodesic, this implies that all ofΣ is in the accumulation set of the Sn, which
finishes the argument in this case.

Assume on the other hand that each tangent plane Π inA to Σ is contained in a closed
totally geodesic ΣΠ that is a proper submanifold of Σ, so that no closed totally geodesic
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submanifold ofΣΠ contained the totally geodesic plane tangent toΠ. Then since the totally
geodesic plane tangent toΠ is dense in ΣΠ by Ratner’s theorems, in the same way as in the
previous paragraph all of ΣΠ must be contained inA. This shows thatA∩ Σ is a union of
closed totally geodesic submanifolds.

Recall that a closed totally geodesic submanifold inA∩Σ is maximal if it is not contained
in a closed totally geodesic submanifold of A ∩ Σ of higher dimension. Then every
closed totally geodesic submanifold of A ∩ Σ is contained in a maximal totally geodesic
submanifold ofA∩Σ. We claim that there are only finitely many maximal totally geodesic
submanifolds ofA∩Σ. If not, then we can choose a sequenceΣ′1, Σ′2,.. of them. By Ratner’s
theorems, theΣ′i must be dense in a closed totally geodesic submanifoldΣ′ ofΣ. Reasoning
similar to before shows that Σ′ is contained inA∩ Σ, which contradicts maximality of the
Σ′i .

Therefore there are only finitely many maximal totally geodesic submanifolds ofA∩Σ.
Since A ∩ Σ is a union of closed totally geodesic submanifolds and each closed totally
geodesic submanifold ofA∩Σ is contained in a maximal such,A∩Σ is equal to the union
of the maximal totally geodesic submanifolds it contains, of which there are only finitely
many. SinceA∩Σ is not contained in finite union of closed totally geodesic submanifolds
of Σ, the only possibility forA∩ Σ is that it is equal to Σ, which finishes the proof.

5. Realizing accumulation sets in higher dimensions

In this section, we will prove Theorem 1.5, restated below for convenience.

Theorem 5.1. Suppose M is a closed hyperbolic d-manifold containing two closed totally geodesic
3-dimensional submanifolds N1 and N2 that intersect along a closed totally geodesic surface.

Then, there exists a sequence (Sn) of closed connected asymptotically Fuchsian pleated surfaces
whose accumulation set is N1 ∪N2. There also exists a sequence (Sn) of closed connected asymptot-
ically geodesic minimal surfaces whose limit in the Hausdorff topology of M is N1 ∪N2.

This is in contrast with the case where all the Sn are totally geodesic. In that setting,
using the work by Mozes-Shah [MS95] we can prove the following proposition.

Proposition 5.2. Let M be a closed hyperbolic d-manifold. The accumulation set of a sequence
Sn ⊂M of closed totally geodesic surfaces consists of a closed connected totally geodesic submanifold
S (i.e., a totally geodesic submanifold S whose lift to the Grassmann bundle of tangent dim(S) planes
to M is connected.)

Proof of Proposition 5.2. Let G = SO0(d, 1) and H = SO0(2, 1) ≤ G.
For each n, let Ŝn be a closed H-orbit in Fr M = Γ\G whose projection to Gr2 M is equal

to Sn. Let µn be the homogeneous probability measure supported on Ŝn.
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Claim. Letπ : Fr M→ Gr2 M denote the projection sending a frame (p, v1, . . . , vd) to (p, span{v1, v2}).
Then,

acc({Sn}) = π

⋂
µ

supp(µ)

 ,
where µ ranges over all weak-* limits of subsequences of (µn).

The theorem of Mozes-Shah implies that each µ is the homogeneous measure supported
on a closed orbit of some closed Lie subgroup Lµ ≤ G properly containing H. In particular,
the projection of ∩µ supp(µ) to Gr2 M is connected as the 2-plane Grassmann bundle to
a totally geodesic submanifold N ⊂ M that corresponds to the connected subgroup of G
obtained as the intersection of the Lµ, which proves the proposition assuming the claim.

We now prove the claim.
Let µnk

⋆
⇀ µ denote a convergent subsequence of (µn). As µnk is the homogeneous

measure supported on Ŝnk , if xnk ∈ Ŝnk is a convergent sequence, then limk→∞ xnk ∈ suppµ.
We are using here the fact from [MS95] that the closed subgroups Lµnk

corresponding to
the µnk are contained in the closed subgroup Lµ corresponding to µ for large enough k.
Conversely, any point in suppµ can be realized as a limit of xnk ∈ Ŝnk , or else there would
be a neighborhood of that point to which µ assigned zero measure which is impossible.
Therefore, acc(Ŝnk) = suppµ.

We conclude by noting that acc(Ŝn) is the intersection of acc(Ŝnk) over all subsequences
(Ŝnk) such that µnk is convergent. That the former is contained in the latter is clear. To see
the other containment, assume for contradiction that there is a point p in the intersection of
acc(Ŝnk) over all subsequences (Ŝnk) such that µnk is convergent, but that p is not contained
in acc(Ŝn). If this is the case, then there is some ϵ > 0 so that for any N, there is some
k > N so that every point on Ŝk is at a distance of at least ϵ from p. Passing to a convergent
subsequence of the probability measures corresponding to the Ŝk, we obtain a weak-* limit
measure that does not contain p, which is a contradiction. □

5.1. Manifolds satisfying the hypotheses of Theorem 5.1. The lattices in hyperbolic space
we consider will be arithmetic of simplest type. We give now a description of their basic
properties and facts about them that will be relevant to our construction. We follow closely
the reference [Mil76][Section 2], see that paper for further details and references.

We give the construction only in the four-dimensional case, as the higher dimensional
case is very similar. but Let q = x2

1 + · · · + x2
4 −
√

px2
5, for p prime. Then, SO(q,Z[

√
p]) is a

lattice in SO(q,R). A quadratic form is anisotropic if it does not represent zero rationally.
Since q is anisotropic, the lattice SO(q,Z[

√
p]) is cocompact. There is a real invertible

matrix T so that TtqT = q0, for q0 the standard signature (4, 1) quadratic form. Therefore



18 FERNANDO AL ASSAL AND BEN LOWE

T−1 SO(q,R)T = SO(4, 1),

Γ := T−1 SO(q,Z[
√

p])T ∩ SO0(4, 1)

is a lattice in SO0(4, 1) = Isom+H4, and M := Γ\H4 is a closed hyperbolic 4-manifold.
Let q1 = x2

1 + x2
2 + x2

3 −
√

px2
5 and q2 = x2

2 + x2
3 + x2

4 −
√

px2
5. Define

Γi := T−1 SO(qi,Z[
√

p])T ∩ SO0(d, 1).

The groups Γi can be seen as subgroups of Isom+Hi, where Hi is the hyperbolic 3-plane
H4
∩ {x1 = 0} for i = 1 and H4

∩ {x2 = 0} for i = 2. In particular, Ni := Γi\Hi are totally
geodesic 3-suborbifolds of M. They meet orthogonally along the totally geodesic 2-orbifold
T = Γ\(H4

∩ {x1, x2 = 0}).
The lattice Γ may have torsion (i.e., M may be an orbifold), but it is possible to pass to

finite index subgroups that do not. For a prime ideal q in the ring of integers of Q[
√

p], the
congruence subgroup Γ(q) of Γ is defined as follows. Note that all entries of each element
of Γ are algebraic integers in Q[

√
p]. We say that γ ∈ Γ satisfies γ ≡ 1 mod q if each of its

diagonal entries is congruent to 1 mod q, and each other entry off the diagonal is congruent
to 0 mod q. The matrices in Γ(q) form a normal subgroup of Γ. For all but finitely many
q, Γ(q) will be torsion free. The lifts of N1 and N2 to Γ(q)\H4 intersect in a totally geodesic
surface each connected component of which finitely covers N1 ∩ N2. This gives examples
of manifolds satisfying the hypotheses of Theorem 5.1.

5.2. Proof of Theorem 5.1. For the most part we follow the notation and terminology from
[AA]. The (ϵ,R)-good curves in M are the closed geodesics with complex translation length
2ϵ-close to 2R. The (ϵ,R)-good pants, are the maps f : P→M from a pair of pants P taking
the cuffs of P to (ϵ,R)-good curves and so that f restricted to the interior of P is an immersed
surface with principal curvatures bounded above by a constant c(ϵ) tending to zero as ϵ
tends to zero. Below, O(ϵ) will be used to denote any quantity that tends to 0 as ϵ→ 0.

From the work of Kahn-Wright [KW21], given ϵ > 0, there is R0(ϵ) > 0 so for every
R > R0(ϵ), both submanifolds Ni contains a (1 + O(ϵ))-quasifuchsian surface Si(ϵ,R) that
is made out of one copy of each (ϵ,R)-good pants in the set of all (ϵ,R)-good pants in Ni,
which we denote by Πϵ,R(Ni).

Using the work of Liu-Marković [LM15], one can show there are numbers ni(ϵ,R) for
i = 1, 2 so that there are connected (1 + O(ϵ))-quasifuchsian surfaces, denoted also Si(ϵ,R)
made out of ni(ϵ,R) copies of each good pants (see [AA][Section 4]). We also know that
given sequences ϵ j → 0 and R j →∞ (with R j ≥ R0(ϵ j)), the surfaces Si(ϵ j,R j) equidistribute
in Gr2(Ni) (see [AA][Theorem 6.1] which proves the corresponding statement for surfaces
made from pleated pants– the same argument applies to the surfaces Si(ϵ j,R j) built from
asymptotically totally geodesic pants that we consider).
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Figure 1. The scrawly curve represents the surfaces S(ϵ j,R j), which become
dense in N1 ∪N2 as j→∞.

Let T be the totally geodesic surface along which N1 and N2 intersect. From the proof of
the Ehrenpreis conjecture by Kahn-Marković [KM15], we know that T has a finite cover T̂
admitting a pants decomposition ΠT of (ϵ,R)-good pants.

Choose a cuff γ1 of T that is part of ΠT and let π− ∈ Π−ϵ,R(γ1) and π+ ∈ Π+ϵ,R(γ1) be
immersed pants in T that are (ϵ,R)-well glued along γ2.

Using the fact that the pants inΠϵ,R(N1) are well-distributed along γ1 (see Theorem 3.3 in
[KW21]), we may find pants p− ∈ Π−ϵ,R(N1) and p+ ∈ Π+ϵ,R(N1) in S1(ϵ,R) that are (ϵ,R)-well
glued along γ1 and so that ft p− is ϵ/R-close to ftπ−.

Thus we may cut S1 and T along γ1 and glue p− to π+ and π− to p+ in a (2ϵ,R)-good
fashion. The reglued surface S′ will still be closed, connected and (1+O(ϵ))-quasifuchsian,
by Theorem 2.2 from [KW21].

We may choose another cuff γ2 of ΠT and similarly perform regluings to join S2 to S′

in a nearly Fuchsian way, giving us a new surface S = S(ϵ,R). By their construction from
asymptotically totally geodesic pants whose union is becoming dense in the Grassman
bundle of tangent 2-planes to N1 ∪N2, if we take ϵ j → 0 and R j → ∞ (where R j ≥ R0(ϵ j)),
the Hausdorff limit of the surfaces S(ϵ j,R j) is Gr2 N1 ∪Gr2 N2 in Gr2 M.

At this point, what is missing for us to conclude the statement of the theorem is that we
have not shown S(ϵ j,R j) are asymptotically Fuchsian. While S(ϵ,R) are made out of gluing
(ϵ,R)-good pants via (ϵ,R)-good gluings, we cannot use Theorem 2.2 from [KW21] as the
loxodromic elements corresponding to the cuffs of the pants used to build S(ϵ,R) do not
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all lie on the same copy of SO0(3, 1) inside SO0(4, 1). (The pants of N1 lie in a distinct copy
from the pants in N2.)

On the other hand, Hamenstädt [Ham14][Proposition 6.2], shows surfaces S in a compact
locally symmetric space M of rank 1 made out of (ϵ,R)-good pants glued via (ϵ,R)-good
gluings are L-quasigeodesic, i.e., their universal cover S̃ ⊂ M̃ is the image of a (L, 0)-
quasiisometric embedding of H2. In the proposition below we show we can make L
arbitrarily close to 1 provided ϵ > 0 is sufficiently small and R > 0 sufficiently large.
(Hamenstädt commented that this should be the case [Ham14][pg. 2].) This follows from
the fact that intrinsic geodesics on the surfaces S made out of (ϵ,R)-good pants glued via
(ϵ,R)-good gluings are curves inHd to which the following proposition applies.

Proposition 5.3. For every ϵ > 0 and c > 0, there is δ > 0 so that a piecewise differentiable curve
γ : R→ Hd composed of segments with geodesic curvature at most δ with length at least c > 0 and
joined at break angles at most δ is a (1 + ϵ)-quasigeodesic. Here δ = δ(d, ϵ).

Proof. First, we note that for any κ > 0, if δ was taken small enough, γ can be homotoped
near the break points to a smooth curve γ̂ with principal curvatures smaller than κ. This
would be clear for curves in Rd, and we can conclude it in our situation by applying this
fact to rescalings of the hyperbolic metric that are sufficiently C2-close to Euclidean space.

Next, for any r > 0, there exists κ0(r) so if a complete bi-infinite curve γ in Hd has
curvature κ < κ0(r), then the boundary ∂Nr(γ) of the r-neighborhood Nr(γ) of γ is strictly
convex – i.e., the second fundamental form of ∂Nr(γ) is positive definite at every point.
To see this, suppose to the contrary that we can find curves γn : R → Hd with curvatures
κn → 0, so ∂Nr(γn) is never strictly convex. Let xn be points on γn so that for each n there is
a point at a distance of less than 2r from xn in the boundary of Nr(γn) where strict convexity
fails. Translating the γn by elements of Isom+Hd, we can assume that the xn all intersect
a fixed compact set. Thus up to passing to a subsequence the γn smoothly converge to
a geodesic γ on compact sets. Therefore, the boundaries ∂Nr(γn) smoothly converge to
∂Nr(γ) on compact sets, which implies ∂Nr(γ) has a point where the second fundamental
form is not positive. This contradicts the fact that the boundary of the r-neighborhood of a
geodesic in Hd is strictly convex.

Finally, a complete quasigeodesic curve γ whose r-neighborhood is strictly convex con-
tains a unique complete geodesic in its r-neighborhood.

Combining the three paragraphs above, we can conclude that if δ was chosen small
enough, there is a complete geodesic at a C1 distance as small as desired from γ as in the
statement of the proposition. This shows that γ is a (1+ϵ)-quasigeodesic, provided δ = δ(ϵ)
was taken small enough. □
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It follows from [Jia21][Section 2.3] that the S(ϵ j,R j) are homotopic to minimal surfaces S j
without branch points. Arguing as in [Jia21] [Section 2.3, 3.2] and [CMN22][Lemma 4.3],
we can show that the S j have the same accumulation set as the S(ϵ j,R j).

To explain in more detail, one can argue by contradiction. Suppose that there is some
ϵ > 0 and points p j on S j the tangent planes to which are at a distance of at least ϵ in the
Grassman bundle from any tangent plane to S(ϵ j,R j). Choosing lifts D j of the S j to the
universal cover that all intersect a fixed compact set containing lifts of p̃, we know that
their limit sets are quasicircles that converge, up to passing to a subsequence, to a round
circle that is the boundary at infinity of a totally geodesic disk D. Jiang [Jia21] shows that
the D j smoothly converge to D on compact subsets. But it is also the case that the lifts of the
S(ϵ j,R j) Hausdorff converge to D on compact subsets. Projecting D j and the lift of S(ϵ j,R j)
back down to M then gives a contradiction for large enough j.

6. Rigidity of totally geodesic surfaces in negative curvature

6.1. Given Corollary 1.3, the proof of Theorem 1.8 is essentially the same as the proof of
[Low23][Theorem 1.5]. We restate Theorem 1.8 for convenience.

Theorem 6.1. Let (M, ghyp) be a closed hyperbolic 3-manifold. Then there is ϵ > 0 and a finite
collection of closed totally geodesic surfaces so that if S is (1+ ϵ)-quasifuchsian surface that does not
belong to the finite collection of totally geodesic surfaces, the following holds. Assume g is a metric
on M with sectional curvature bounded above by -1 so that

• Σ is a totally geodesic hyperbolic surface in (M, g)

• There is a homotopy equivalence ϕ : M→M so ϕ(Σ) = S.

Then, g is isometric to ghyp and S is homotopic to a totally geodesic surface in (M, ghyp).

As before we can take Σ to be the unique area-minimizing surface in its homotopy class
and have principal curvatures as small as desired, by making ϵ small. We say that a surface
Σ in M satisfies the well-distribution property if every point in M̃ � H3 is contained in a solid
cube whose faces are contained in lifts of Σ to H3. It is a straightforward consequence
of Theorem 1.1 that if ϵ is small enough and Σ is (1 + ϵ)-quasifuchsian, then Σ satisfies
the well-distribution property unless it is totally geodesic. We also know by the Mozes-
Shah theorem that at most finitely many closed totally geodesic surfaces fail to satisfy the
well-distribution property.

There is a slightly stronger version of the well-distribution property called the strong
well-distribution property [Low23][Definition 5.1] Using the fact that theΣ are asymptotically
dense, it is not hard to check that Σ satisfies the strong well-distribution property provided
Σ is (1 + ϵ)-quasifuchsian and not one of finitely many totally geodesic surfaces.
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Assume that h(Σ) is homotopic to a hyperbolic totally geodesic surface Σ′ in N. The
arguments in [Low23][Section 6.2] show that Σ′ satisfies the well-distribution property if
Σ satisfies the strong well-distribution property. From there [Low23][Theorem 1.1] implies
that N has constant sectional curvature −1, and so by Mostow rigidity must be isometric
to M.

6.2. The proof of Theorem 1.7 requires a different argument. We restate it here for conve-
nience.

Theorem 6.2. Let (M, g) be a negatively curved 3-manifold and (Σn) ⊂ (M, g) be a sequence of
asymptotically geodesic surfaces.

Suppose there is a diffeomorphism ϕ : M → M so that Sn := ϕ(Σn) form a sequence of
asymptotically geodesic surfaces for the hyperbolic metric ghyp of M. Then, g is isometric to ghyp.

Let Σn be the sequence of asymptotically geodesic surfaces in a closed negatively curved
manifold M, and let h : M→ (M, ghyp) be the homotopy equivalence from the assumptions
of the theorem.

LetΣ′n be the sequence of asymptotically geodesic minimal surfaces in (M, ghyp), obtained
by taking the area-minimizing representatives of the homotopy classes h(Σ′n), which are
unique for large enough n. In more detail, [Eps86][Equation 5.5] implies that since the
h(Σn) are homotopic to a sequence of asymptotically geodesic surfaces, their quasiconfor-
mal constants tend to 1, and then work by Seppi [Sep16] implies that area-minimizing
representatives in their homotopy classes Σ′n are asymptotically geodesic and unique (see
also [HLS23].)

Since the Σ′n are asymptotically Fuchsian and since it is not the case that all but finitely
many are covering a fixed surface, we know that their tangent planes become dense in
Gr2(M, ghyp) by Corollary 1.3. Choose tangent planes πn to Σ′n that converge, up to passing
to a subsequence, to a tangent plane to M that contains a tangent vector with dense orbit
under the geodesic flow.

The homotopy equivalence between (M, g) and (M, ghyp) given by the assumptions of the
theorem must be homotopic to a diffeomorphism by geometrization and the fact that every
self homotopy equivalence of a closed hyperbolic manifold is homotopic to an isometry
by Mostow rigidity: fix such a diffeomorphism F : (M, ghyp)→ (M, g) and choose a lift of F
to an equivariant diffeomorphism F̃ : H3

→ (M̃, g̃), where we have identified the universal
cover of (M, ghyp) with H3. Choose lifts Σ̃′n of Σ′n to H3 whose intersection with a fixed
fundamental domain for the action of π1(M) on H3 contain tangent planes that projects
to πn. After passing to a subsequence, we can assume that the Σ̃′n converge on compact
subsets to a totally geodesic surface Σ̃′ that projects to a surface Σ′ in (M, ghyp). Note that
Σ′ contains the tangent plane π, and thus Σ′ has a tangent vector with dense orbit under
the geodesic flow.
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A choice of lift F̃ of the diffeomorphism F to a map (M, ghyp) → (M, g) between the
universal covers and the choices of lifts Σ̃′n determine lifts Σ̃n of the Σn to (M̃, g̃), that are
at finite Hausdorff distance from the F̃(Σ̃′n). Using the fact that the Σ̃n are asymptotically
geodesic, and so in particular have uniformly bounded second fundamental forms, and
arguing like in [CMN22][Proposition 4.1], we can reason that, possibly after passing to
a subsequence, the Σ̃n converge to a totally geodesic surface that we call Σ̃, and whose
projection to (M, g) we call Σ. We claim that there is a totally geodesic surface that is dense
in the 2-plane Grassmann bundle of (M, g). It then follows that every tangent 2-plane to
M is tangent to a totally geodesic surface, which Cartan showed implies that M must have
constant sectional curvature [Car28]. To finish the proof, it is therefore enough to show that
there is a totally geodesic surface that is dense in the 2-plane Grassmann bundle of (M, g).

There is a homeomorphismΦ : UT(M, ghyp)→ UT(M, g) that maps geodesics to geodesics
(i.e., an orbit equivalence between the geodesic flow for g and the geodesic flow for ghyp)
[Gro00]. By how Φ is constructed, it is homotopic to the lift UT(M, ghyp) → UT(M, g) of
a diffeomorphism (M, ghyp) → (M, g). By how we constructed Σ′ and Σ, we know that,
possibly after composing Φ with an element of the finite group of isometries of (M, ghyp),
that Φ maps every unit tangent vector tangent to Σ′ to a unit tangent vector tangent to Σ.
Because Σ′ contains a unit tangent vector with dense orbit under the geodesic flow, the
same must be true of Σ. Choose a frame Π in the frame bundle of (M, g) that has dense
orbit under the frame flow. This is possible because the frame flow of a closed negatively
curved 3-manifold is ergodic [BG80].

BecauseΣ contains a vector with dense orbit under the geodesic flow, we can then choose
a sequence of frames Πn on Σ the initial vectors of which converge to the first vector of Π.
Passing to a convergent subsequence of the Πn so that they converge to some frame Π′, it
will then be the case that the first two unit vectors in the frame Π′ span a tangent plane
that is a limit of tangent planes to Σ, and thus is itself tangent to a totally geodesic surface.
SinceΠ andΠ′ share the same first vector and their second two vectors differ by a rotation
in the plane orthogonal to the first vector, Π′ also has dense orbit under the frame flow.
The tangent plane spanned by the first two vectors of Π′ is therefore tangent to a totally
geodesic surface whose closure is all of Gr2 M, which finishes the proof.

7. Rigidity of totally umbilic surfaces

We give the proof of Theorem 1.10 from the introduction, restated here for convenience.

Theorem 7.1. Suppose that (M, g) is a closed negatively curved 3-manifold, and that it contains
infinitely many distinct totally umbilic surfaces Σn as in Question 5. Suppose there is a homotopy
equivalence h : M→M so that the Sn := h(Σn) are homotopic to a sequence of asymptotically totally
umbilic surfaces for a hyperbolic metric ghyp on M. Then (M, g) must have constant curvature.
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Let M be a closed negatively curved 3-manifold with sectional curvature at most −c, and
let Σn be totally umbilic surfaces in M each with mean curvature constant and equal to
Hn < c. Let h be a homotopy equivalence as in the statement of Theorem 1.10 between M
and a closed hyperbolic 3-manifold (M, ghyp), so that the h(Σn) are homotopic to a sequence
of asymptotically totally umbilic surfaces Σ̂n. Because all totally umbilic surfaces in H3 with
principal curvatures less than 1 are constant distance surfaces to totally geodesic planes in
H3, a simple contradiction compactness argument shows that the Σ̂n are homotopic to a
sequence Σ′n of asymptotically geodesic surfaces in (M, ghyp). The tangent planes to the Σ′n
must be dense in Gr2(M) by Corollary 1.3, and consequently the same is true for the Σ̂n.

7.1. Background on k-surfaces. A k-surface is a surface for which the product of the prin-
cipal curvatures, or extrinsic curvature, is constant and equal to k. They will be useful
for us because totally umbilic surfaces are special cases of k-surfaces. Labourie initiated
the study of the dynamical properties of the space of k-surfaces, presenting them as a
higher-dimensional analogue of the geodesic flow when the ambient manifold is nega-
tively curved [Lab99], [Lab05] (see [Lab02] for a survey.) We describe in this section results
that will play the role of the geodesic orbit equivalence result used in Section 6.

If N is a negatively curved 3-manifold with sectional curvature at most−k, then the space
of pointed k-surfaces in N (the space of k-surfaces together with a choice of basepoint)
suitably topologized has the structure of a lamination LN, whose leaves are obtained by
fixing a k-surface, and allowing the basepoint to vary [Lab99]. (While the k-surfaces
corresponding to distinct leaves of this lamination may intersect inside N, they are disjoint
in the phase space of pointed k-surfaces in N.) Labourie in the local case and Smith in
general proved that this lamination is independent of the metric on N in the following
sense: For any two N1 and N2 as above there is a leaf-preserving homeomorphism ΦL
between LN1 and LN2 (see [Smi21] for precise statements.) We will need the following
two facts about the leaf-preserving homeomorphism ΦL, which readily follow from the
construction and basic properties of the ΦL, and which we write as propositions.

Proposition 7.2. Suppose that f is a homotopy equivalence between N1 and N2. Then we can
choose ΦL so that for every π1-injective k-surface Σ in N1, the k-surface corresponding to Σ under
ΦL is homotopic to f (Σ).

Proposition 7.3. Suppose that Σn is a sequence of k-surfaces in N1, and that there is a k-surface Σ
in N1 so that the following holds: there are lifts Σ̃n and Σ̃ to the universal cover of N1 so that Σ̃n
converges smoothly to Σ̃ on compact sets. Then the same statement holds for the k-surfaces Σ′n and
Σ′ in N2 that correspond respectively to the Σn and Σ under ΦL.

We will also use recent work by Alvarez-Lowe-Smith [ALS22], that refined the existence
of the leaf-preserving homeomorphismsΦL as follows. Let (M, ghyp) be a closed hyperbolic
3-manifold. Then for each 0 < k < 1, the unit tangent bundle to M has a natural foliation
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FM(k) by totally umbilic surfaces with constant extrinsic curvature k, lifted by their unit
normal vector fields (note that any totally umbilic surface has a canonical unit normal vector
field, just by taking the unit vector field in the direction of the mean curvature vector.) This
is because H3 has such a foliation that is invariant by isometries. The following theorem is
a consequence of [ALS22][Theorem 2.1.3].

Theorem 7.4. For every negatively curved Riemannian 3-manifold N with sectional curvature at
most −k the following holds. The unit tangent bundle UT(N) admits a foliation FN(k) by k-surfaces
lifted by their unit normal vectors. The foliation FN(k) has the following property. Let M be a
hyperbolic manifold diffeomorphic to N. Then there is a homeomorphism Φ : UT(M) → UT(N)
sending leaves of FM(k) to leaves of FN(k). Moreover, Φ can be chosen so that, for each leaf F of
FN(k), Φ(F) and ΦL(F) are the same k-surface.

7.2. As in the Section 6, after passing to a subsequence we can find a dense immersed
totally geodesic plane in (M, ghyp) that lifts to a totally geodesic plane in H3 to which lifts
of the Σ′n converge. We can thus also find a totally umbilic plane Σ̂ in (M, ghyp) playing the
same role for the Σ̂n: i.e., which has a lift to H3 to which lifts of the Σ̂n converge (this totally
umbilic plane is at constant distance to the totally geodesic plane of the previous sentence.)

After passing to a subsequence, we can assume that the Hn converge to some real number
H. The extrinsic curvatures of the totally umbilic surfacesΣn in N consequently converge to
H2. Let Φ : UT(M)→ UT(N) be the homeomorphism from Theorem 7.4 sending tangential
lifts of k-surfaces in UT(M) to tangential lifts of k-surfaces in UT(N) for k = H2. Then Φ(Σ̂)
is dense in UT(N), and projects to a k-surface Σ in N for k = H2. If Σ is totally umbilic,
then every tangent plane to N is tangent to a totally umbilic surface. That M has constant
curvature then follows from the main theorem of [LN71], which is the analogue for totally
umbilic surfaces of the theorem by Cartan used in the previous section. It is therefore
enough to prove that Σ is totally umbilic, which we will accomplish by showing every
tangent plane to Σ is a limit of tangent planes to the Σn.

First assume that the extrinsic curvatures of the Σn are all equal to H2. Then it follows
from Propositions 7.2 and 7.3 that lifts of Σ̂n to the universal cover smoothly converge to a
lift of Σ̂ to the universal cover on compact sets, which establishes the claim.

In the general case that the Hn are allowed to vary, we let Σn(H2) be the unique k-surface
in the homotopy class of Σn for k = H2. Choose lifts Σ̃n(H2) and Σ̃n of Σn(H2) and Σn to
Ñ, so that Σ̃n(H2) and Σ̃n are at finite Hausdorff distance from each other, and intersect
a fixed compact fundamental domain independent of n. Then if the Hausdorff distance
between the tangential lifts of Σ̃n(H2) and Σ̃n tends to zero as n tends to infinity, we will
have reduced establishing the claim to the case that all Σn were H2 surfaces and be able to
conclude by the same argument as in the previous paragraph.

Therefore suppose that this fails, and that for some ϵ > 0 it is the case that some fixed
compact set K of the unit tangent bundle contains unit tangent vectors normal to Σ̃n(H2)∩K
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at a distance of at least ϵ > 0 from Σ̃n ∩ K. Then after passing to subsequences the Σ̃n(H2)
and Σ̃n converge on compact sets to k-surfaces S1 and S2 for k = H2 by [Smi24][Theorem
1.1.1, Remark 1.1.2]. But S1 and S2 have the same asymptotic boundary, and so S1 = S2 by
the main results of [Lab99] (see also [Smi21]), which is a contradiction.

8. Asymptotically dense but not asymptotically geodesic minimal
surfaces

In this section, we prove Theorem 1.11 from the introduction. We construct a sequence
of essential surfaces built from pants as follows.

Recall the terminology from Section 5.2. For ϵ > 0 and R(ϵ) > 0 sufficiently large, let S1
ϵ

and S2
ϵ be (1 +O(ϵ))-quasifuchsian closed connected surfaces built out of at least one copy

of each pants in Πϵ,R, all glued via (ϵ,R)-good gluings. For a fixed small θ, we wish to
build a surface Sϵ,θ, by cutting S1

ϵ and S2
ϵ along a cuff γ ∈ Γϵ,R and regluing them at an angle

approximately equal to θ.
Precisely, fix a cuff γ ∈ Γϵ,R. By the equidistribution of feet, there are pants π−1 ∈ Π

−

ϵ,R(γ)
and π−2 ∈ Π

−

ϵ,R(γ), lying respectively on S1 and S2 so that

| ftπ−1 − ftπ−2 − iθ | <
ϵ
R
.

We also know there are π+1 ∈ Π
+
ϵ,R(γ) and π+2 ∈ Π

+
ϵ,R(γ), lying respectively on S1 and S2 that

satisfy

| ftπ−1 − τ(ftπ+1 )| <
ϵ
R

and | ftπ−2 − τ(ftπ+2 )| <
ϵ
R
,

where τ : N1(
√
γ) → N1(

√
γ) is the map τ : x → x + 1 + iπ. We obtain our surface Sϵ,θ

by cutting both S1 and S2 along γ and regluing them by gluing π−1 to π+2 and π+1 to π−2 . It
follows from [KM12a] that Sϵ,θ is K(θ)-quasifuchsian.

We form a good matching of (ϵ,R) good pants as before for ϵ → 0, R → ∞, except
that we choose one pair of pants to glue together at a small angle θ along their cuff, for
θ independent of n. Denote the sequence of surfaces thus obtained by Sn(θ). Choose a
minimal surface Σn(θ) in the homotopy class of Sn(θ).

Choose a Dirichlet fundamental domain for the action of π1(M) on H3, and lift the closed
geodesic at which pants in Sn(θ) are glued at a definite angle to a geodesic γn(θ) in H3 that
intersects ∆ and that is contained in a lift S̃n(θ) of Sn(θ). The width of the convex hull of
a quasicircle in ∂∞(H3) is the supremal distance between points in different components
of its boundary. We know that the width of the convex core of the limit set of S̃n(θ) is at
least some positive constant just depending on θ. This implies that the K for which Sn(θ)
is K-quasiconformal is uniformly bounded away from 1 (see e.g. the proof of the main
theorem of [Sep16], which implies a bound for the width of the convex hull in terms of
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the quasiconformal constant.) Work by Epstein [Eps86][Equation 5.5] then implies that the
minimal surface Σn(θ) must have principal curvatures uniformly bounded away from 1 by
a constant that depends only on θ.

On the other hand, choose a sequence of points pn(θ) on Sn(θ) so that:

(1) The tangent planesΠn to Sn(θ) are well-defined and converge to a planeΠ ∈ Gr2(M)
tangent to a dense totally geodesic plane in Gr2(M).

(2) The distance on Sn(θ) between pn(θ) and γn(θ) tends to infinity.

Choose lifts S̃n(θ) of Sn(θ) to H3 containing lifts p̃n(θ) of pn(θ) that are contained in ∆,
and let Σ̃n(θ) be the corresponding lifts of Σn(θ) to H3. Then by the second property above
S̃n(θ) converges to a totally geodesic plane on compact subsets of H3. Therefore the convex
hull of S̃n(θ) converges to a totally geodesic plane on compact subsets of H3. Since Σ̃n(θ)
is a minimal surface, it is contained in the convex hull, and so it must also converge to a
totally geodesic plane. It follows that the closure of Σn(θ) in Gr2(M) contains the closure of
the totally geodesic plane tangent to Π in Gr2(M), and so its closure is all of Gr2(M).
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